Primary citations
If you find this database useful please cite:
[0] Pintado-Grima C, Bárcenas O, Iglesias V, Santos J, Manglano-Artuñedo Z, Pallarès I, Burdukiewicz M, Ventura S. aSynPEP-DB: a database of biogenic peptides for inhibiting α-synuclein aggregation. Database, Volume 2023, 2023, https://doi.org/10.1093/database/baad084.
[1] Santos J, Gracia P, Navarro S, Peña-Díaz S, Pujols J, Cremades N, Pallarès I, Ventura S. α-Helical peptidic scaffolds to target α-synuclein toxic species with nanomolar affinity. Nat Commun. 2021 Jun 18;12(1):3752. doi: 10.1038/s41467-021-24039-2.
[2] Santos J, Pallarès I, Ventura S. Is a cure for Parkinson’s disease hiding inside us? Trends Biochem Sci. 2022 Aug;47(8):641-644. doi: 10.1016/j.tibs.2022.02.001.
Additional resources
aSynPEP-DB was built using the following additional resources:
[3] Muñoz V, Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399-409. doi: 10.1038/nsb0694-399. PMID: 7664054.
[4] Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics. 2008 Sep 15;24(18):2101-2. doi: 10.1093/bioinformatics/btn392.
[5] Holehouse AS, Das RK, Ahad JN, Richardson MO, Pappu RV. CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins. Biophys J. 2017 Jan 10;112(1):16-21. doi: 10.1016/j.bpj.2016.11.3200.
[6] Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1.
[7] Santos J, Iglesias V, Pintado C, Santos-Suárez J, Ventura S. DispHred: A Server to Predict pH-Dependent Order-Disorder Transitions in Intrinsically Disordered Proteins. Int J Mol Sci. 2020 Aug 13;21(16):5814. doi: 10.3390/ijms21165814.
[8] Wei L, Ye X, Sakurai T, Mu Z, Wei L. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning. Bioinformatics. 2022 Mar 4;38(6):1514-1524. doi: 10.1093/bioinformatics/btac006.
[9] Dai R, Zhang W, Tang W, Wynendaele E, Zhu Q, Bin Y, De Spiegeleer B, Xia J. BBPpred: Sequence-Based Prediction of Blood-Brain Barrier Peptides with Feature Representation Learning and Logistic Regression. J Chem Inf Model. 2021 Jan 25;61(1):525-534. doi: 10.1021/acs.jcim.0c01115.
[10] de Oliveira ECL, Santana K, Josino L, Lima E Lima AH, de Souza de Sales Júnior C. Predicting cell-penetrating peptides using machine learning algorithms and navigating in their chemical space. Sci Rep. 2021 Apr 7;11(1):7628. doi: 10.1038/s41598-021-87134-w.
[11] Uhlén M, Fagerberg L, Hallström BM et al. Proteomics. Tissue-based map of the human proteome. Science. 2015 Jan 23;347(6220):1260419. doi: 10.1126/science.1260419.
[12] Schmidt T, Samaras P, Frejno M, Gessulat S, Barnert M, Kienegger H, Krcmar H, Schlegl J, Ehrlich HC, Aiche S, Kuster B, Wilhelm M. ProteomicsDB. Nucleic Acids Res. 2018 Jan 4;46(D1):D1271-D1281. doi: 10.1093/nar/gkx1029.
[13] Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2023 update. Nucleic Acids Res. 2023 Jan 6;51(D1):D1373-D1380. doi: 10.1093/nar/gkac956.